The Newton stratification on deformations of local G-shtuka

نویسنده

  • Urs Hartl
چکیده

Bounded local G-shtuka are function field analogs for p-divisible groups with extra structure. We describe their deformations and moduli spaces. The latter are analogous to Rapoport-Zink spaces for p-divisible groups. The underlying schemes of these moduli spaces are affine DeligneLusztig varieties. For basic Newton polygons the closed Newton stratum in the universal deformation of a local G-shtuka is isomorphic to the completion of a corresponding affine Deligne-Lusztig variety in that point. This yields bounds on the dimension and proves equidimensionality of the basic affine Deligne-Lusztig varieties. Mathematics Subject Classification (2000): 20G25 (11G09, 14L05, 14M15)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Newton Strata in the Loop Group of a Reductive Group

We generalize purity of the Newton stratification to purity for a single break point of the Newton point in the context of local G-shtukas respectively of elements of the loop group of a reductive group. As an application we prove that elements of the loop group bounded by a given dominant coweight satisfy a generalization of Grothendieck’s conjecture on deformations of p-divisible groups with ...

متن کامل

ar X iv : n lin / 0 20 50 12 v 2 [ nl in . S I ] 1 O ct 2 00 2 Singular sector of the Burgers - Hopf hierarchy and deformations of hyperelliptic curves

We discuss the structure of shock singularities of the Burgers-Hopf hierarchy. It is shown that the set of singular solutions defines a stratification of the affine space of the flow parameters in the hierarchy. The stratification is associated with the Birkhoff decomposition of the Grassmannian given by the set of linear spaces spanned by the hierarchy. We then construct integrable hierarchy o...

متن کامل

Procrustean statistical inference of deformations

A two step method has been devised for the statistical inference of deformation changes. In the first step of this method and based on Procrustes analysis of deformation tensors, the significance of the change in a time or space series of deformation tensors is statistically analyzed. In the second step significant change(s) in deformations are localized. In other words, they are assigned to ce...

متن کامل

The use of radial basis functions by variable shape parameter for solving partial differential equations

In this paper, some meshless methods based on the local Newton basis functions are used to solve some time dependent partial differential equations. For stability reasons, used variably scaled radial kernels for constructing Newton basis functions. In continuation, with considering presented basis functions as trial functions, approximated solution functions in the event of spatial variable wit...

متن کامل

A Discontinuous Galerkin Method for the Navier-Stokes Equations on Deforming Domains using Unstructured Moving Space-Time Meshes

We describe a high-order accurate space-time discontinuous Galerkin (DG) method for solving compressible flow problems on two-dimensional moving domains with large deformations. The DG discretization and space-time numerical fluxes are formulated on a three-dimensional space-time domain. The scheme is implicit, and we solve the resulting non-linear systems using a parallel Newton-Krylov solver....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009